
PHYSICAL REVIEW E OCTOBER 1997VOLUME 56, NUMBER 4
Mean-field analysis and Monte Carlo study of an interacting two-species reaction model

K. S. Brown, K. E. Bassler, and D. A. Browne
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803

~Received 4 April 1997!

We study the phase diagram and critical behavior of an interacting one-dimensional two-species monomer-
monomer catalytic surface reaction model with a reactive phase as well as two equivalent adsorbing phases
where one of the species saturates the system. The model depends on two parameters: the relative adsorption
rates of the two species and a repulsive interaction between like neighbors. A mean-field analysis including
correlations up to triplets of sites fails to reproduce the phase diagram found by Monte Carlo simulations. The
three phases coexist at a bicritical point whose critical behavior is described by the even branching annihilating
random-walk universality class. This work confirms the hypothesis that the conservation modulo 2 of the
domain walls under the dynamics at the bicritical point is the essential feature in producing critical behavior
different from directed percolation. The interfacial fluctuations show the same universal behavior seen at the
bicritical point in a three-species model, supporting the conjecture that these fluctuations are an additional
universal characteristic of the model.@S1063-651X~97!04610-2#

PACS number~s!: 05.70.Ln, 64.60.Kw, 82.20.Mj
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I. INTRODUCTION

Nonequilibrium statistical models with many degrees
freedom whose dynamics violate detailed balance arise
many areas such as biological populations, chemical re
tions, fluid turbulence, traffic flow, and growth-depositio
processes. The macroscopic behavior of these models ca
much richer than that of systems in thermal equilibriu
showing organized macroscopic spatial and temporal st
tures such as pulses or waves and even spatiotemporal c
Even the steady-state behavior of a homogeneous sy
without these structures can be far more complicated, inv
ing, for example, a scale-invariant steady state without t
ing the system to a specific point. However, like their eq
librium cousins, systems at continuous transitions betw
nonequilibrium steady states show universal behavior tha
insensitive to microscopic details and depends only on pr
erties such as symmetries and conservation laws.

One class of models that has received extensive stud
that with absorbing phase transitions where the sys
changes from an active state with statistical fluctuatio
about the mean behavior to a noiseless inert state consi
of a single microscopic configuration. The term ‘‘absorbing
refers to the fact that the system cannot leave this state
it reaches it. Examples include directed percolation~DP!
@1,2#, the contact process@3#, autocatalytic reaction model
@4#, and branching annihilating random walks with odd nu
bers of offspring@5,6#. Both renormalization-group calcula
tions @1,7# and Monte Carlo simulations@2–6,8# show that
these models form a single universality class for a pur
nonequilibrium model with no internal symmetry in the o
der parameter.

Recently, a number of models with continuous adsorb
transitions in a universality class distinct from directed p
colation have been studied. These models include probab
tic cellular automata models studied by Grassberger and
workers@9#, certain kinetic Ising models@10#, the interacting
monomer-dimer model@11#, a three species monomer mod
with Potts-like symmetry@12,13#, and branching annihilating
561063-651X/97/56~4!/3953~6!/$10.00
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random walks with an even number of offspring~BAWE!
@5,14#. All of these models except for the BAWE have tw
equivalent absorbing states, indicating the importance
symmetry of the adsorbing state to the universality cla
However, the universal behavior of this class is apparen
controlled by a dynamical conservation law. If the importa
dynamical variables in this class are defects represente
the walkers in the BAWE model and the walls between d
ferent saturated domains in the other models, the mo
have a ‘‘defect parity’’ conservation law@9# where the num-
ber of defects is conserved modulo 2. Recent field-theor
work confirms this viewpoint@15#.

Recently, two of us@12,13# investigated a three-specie
monomer model with annihilation reactions between dissi
lar species. The transitions from the reactive state to a sin
absorbing state where one species saturates the system
the DP universality class. These phase boundaries me
bicritical points @16# where two different absorbing state
coexist. Because the domain walls between different
mains of the two phases spawn and annihilate in pairs,
critical behavior fell into the BAWE universality class. W
also showed that at the bicritical point the characteristic fl
tuations of the domain walls between the equivalent abso
ing phases was given by an independent exponent.

The present paper studies the connection between the
havior at a bicritical point and the presence of the BAW
critical behavior and tests the universality of the interfac
fluctuations. We investigate a model introduced by Zh
Redner, and Park@17# that also has a bicritical point at th
junction of two absorbing phase transitions. Unlike our p
vious work, this model has only two species that compete
adsorption sites and annihilate each other if they occupy
jacent sites. The bicritical point arises by adding a repuls
among like neighbors that affects the adsorption rate. Des
these differences, we find that the bicritical exponents in t
model also fall into the BAWE class and the interfacial e
ponents are the same as in the three species model, len
credence to the universal nature of the interfacial fluct
tions.
3953 © 1997 The American Physical Society
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In Sec. II we introduce the model and in Sec. III prese
results for the mean-field theory in two levels of approxim
tion. Section IV discusses our static and dynamic Mo
Carlo simulations that yield a different phase diagram fr
the mean-field results and produce critical exponents for
dynamic behavior that fall into the BAWE class. Section
contains our conclusions.

II. MODEL

The model we study was introduced by Zhuo, Park, a
Redner@17#. Two monomers, calledA andB, adsorb at the
vacant sites of a one-dimensional lattice with probabilitiep
and q, respectively, wherep1q51. Unlike monomers on
adjacent sites react immediately and leave the lattice, lea
to a process limited only by adsorption. Without furth
rules, this model has no reactive steady state excep
p5q51/2. To expand this reactive ‘‘point’’ into a reactiv
region, Zhuoet al. introduced a repulsive interaction amon
like monomers that affected the adsorption step. If eit
neighboring site is occupied by the same species as that
ing to adsorb, the adsorption probability is reduced by a f
tor r ,1, mimicking the effect of a nearest-neighbor rep
sive interaction.

We have performed static Monte Carlo simulations t
produce a phase diagram similar to the one found by Zhuet
al. @17#. The diagram, displayed in Fig. 1 withp plotted vsr ,
shows a reactive steady state bordered by two equiva
saturated phases~labeledA andB). The transitions from the
reactive phase to either of the saturated phases are con
ous, while the transition between the saturated phases is
order discontinuous. The two saturated phases meet th
active phase at abicritical point @16# at a critical value of
r 5r c . In the case ofr 51, the reactive region no longe
exists @18,19# and the only transition line is the first-orde
discontinuous line between the saturated phases. Ano
model in which the adsorption repulsion is not symmet
~only A’s ‘‘feel’’ the repulsion! has been studied@17# and its
critical behavior was found to be in the DP universality cla
However, no effort was made to determine either the loca
of the bicritical point or the bicritical behavior of the mode

FIG. 1. Phase diagram determined by Monte Carlo simula
for the interacting monomer-monomer model. The continuous tr
sitions from either of the saturated phases (A andB) to the reactive
phase are shown as solid lines, while the transition between the
saturated phases~dot-dash line! is first order. The three phases c
exist at a bicritical point at (r c ,pc)5(0.7435,0.5), which is shown
as a heavy dot.
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III. MEAN-FIELD THEORY

To analyze the kinetics of this model, it is useful to pe
form a mean-field analysis. While such an analysis negle
long-range correlations and thus cannot be expected to p
erly predict critical properties, it should properly predict th
qualitative structure of the phase diagram, including the
istence of continuous transitions and multicritical points. T
mean-field analysis also provides a starting point for stu
ing the importance of such fluctuations, which become p
ticularly important near continuous phase transitions. T
mean-field approach we use@20# studies the time evolution
of clusters of sites, the approximation coming in truncati
the probabilities of observing clusters of larger size in
probabilities for smaller size clusters. The analysis presen
below of this one-dimensional model includes clusters c
sisting of up to triplets of adjacent sites.

At a particular time, a lattice withN sites will haveNV
vacancies, the remaining sites being filled withNA A mono-
mers andNB B monomers. The density of speciesi 5A,B,V
is xi[Ni /N. We have the obvious constraint

xV1xA1xB51, ~1!

so we can takexA andxB as independent.
We next consider clusters of pairs of sites, where we

fine Ni j as the number of pairs with speciesi on one site and
j on the site to its right, and the pair densityxi j [(Ni j /N).
Because of the immediate reaction ofAB pairs we have
NAB5NBA50. Using relations between the pair and site o
cupancies

xA5xAA1xAV5xVA1xAA ,

xB5xBB1xBV5xVB1xBB ,

xV5xAV1xBV1xVV , ~2!

only two of the pair densities are independent of thexi ,
which we choose to bexAA andxBB .

For the clusters of triples we defineNi jk as the number of
triples with speciesj in the central site, speciesi to the left,
and speciesk to the right, with the corresponding densitie
xi jk5Ni jk /N. The prohibition of adjacentAB pairs and the
relations between the numbers of clusters of triples and p
of sites,

xAA5xVAA1xVVV5xAAV1xAAA ,

xAV5xVAV1xAAV5xAVV1xAVA1xAVB ,

xVA5xVAV1xVAA5xVVA1xAVA1xBVA ,

xBB5xVBB1xBBB5xBBV1xBBB ,

xBV5xVBV1xBBV5xBVV1xBVA1xBVB ,

xVB5xVBV1xVBB5xVVB1xAVB1xBVB ,

xVV5xVVV1xVVA1xVVB

5xVVV1xAVV1xBVV , ~3!
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gives a total of six independent triple densitie
xAAA , xAVA , xBBB , xBVB , xAVB , and xBVA . The last two
are equal in a homogeneous steady state.

We must calculate the rate that each of these dens
change due to four allowed kinetic processes: deposition
anA without reaction, removal of anA by reaction with aB
adsorbing next to it, deposition of aB without reaction, and
removal of aB by reaction by an adsorbingA. These four
processes are detailed in Table I. Because of the symmet
the reaction rules, we will usually only present explicit fo
mulas for half of the equations; the remainder can be fo
by interchangingA andB everywhere in the equations.

The exact equations for the single-site densities are

dxA

dt
5pxVVV1pr~xVVA1xAVV1xVAV!

2q~xVVA1xAVV1xVAV!2qr~xAVB1xBVA!,

FIG. 2. Phase boundary between theA-saturated and reactiv
phases in the site approximation~solid line! and pair approximation
~dashed line!. The triple approximation is indistinguishable from
the pair approximation in this figure.
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dxB

dt
5qxVVV1qr~xVVB1xBVV1xVBV!

2p~xVVB1xBVV1xVBV!2pr~xBVA1xAVB!, ~4!

which clearly show theA↔B symmetry noted above. By
considering each of the possible reactions in Table I,
equation for theAA pairs is

dxAA

dt
5pr~xVVA1xAVV12xAVA!2q~xVVAA1xAAVV

1 1
2 xAAVA1 1

2 xAVAA!2qr~xAAVB1xBVAA!, ~5!

where we have denoted densities of quartets of sites in
obvious extension of our notation. Finally, the triples ob
the equations

TABLE I. Rates for all allowed kinetic processes. The adso
tion is attempted on the middle site in each case.

A adsorption Rate B adsorption Rate

VVV→VAV p VVV→VBV q
VVA→VAA pr VVA→VVV qr
AVV→AAV pr AVV→VVV qr
AVA→AAA pr AVA→AVV 1

2 qr
AVA→VVA 1

2 qr
VVB→VVV p VVB→VBB qr
BVV→VVV p BVV→BBV qr
BVB→BVV 1

2 pr BVB→BBB qr

BVB→VVB 1
2 pr

AVB→AVV pr AVB→VVB qr
BVA→VVA pr BVA→BVV qr
dxAAA

dt
5pr~xVVAA1xAAVV1xAVA1xAVAA1xAAVA!2q~xVVAAA1xAAAVV1

1
2 xAAAVA1

1
2 xAVAAA!2qr~xAAAVB1xBVAAA!,

dxAVA

dt
5p~xVVVA1xAVVV!2prxAVA2q~xVVAVA1xAVAVV1xAVAVA1xAVA!2qr~xAVAVB1xBVAVA!,

dxAVB

dt
5pxVVVB1qxAVVV2q~xVVAVB1

1
2 xAVAVB!2p~xAVBVV1

1
2 xAVBVB!2qr~xAVB1xBVAVB!2pr~xAVB1xAVBVA!. ~6!
he
no

s we

of
as

n

oi-
In general, for a cluster ofM sites, the adsorption process
link clusters ofM sites to clusters ofM11 sites and the
reaction processes link to clusters ofM12 sites.

To close the equations we perform a truncation. In the
approximation, we ignore any spatial correlations and so
just Eqs. ~4! using Eq. ~1! and the approximation
xi jk'xixjxk . We find the boundary between the saturatedA
phase and the reactive phase by finding the combinatio
parametersp and r where the saturated phase fixed po
loses its stability. This occurs whenp51/(11r ). The
B-saturated phase boundary is given byq512p
te
e

of
t

51/(11r ). These are shown as dashed lines in Fig. 2. T
absorbing state transitions are continuous, but there is
coexistence line between the saturated phases, just a
found in Ref.@13#.

In the pair approximation, we replace correlations
triples and larger clusters of sites by approximating them
xi jk5xi j (xjk /xj ) and xi jkl 5xi j (xjk /xj )(xkl /xk). Each term
in parentheses such as (xjk /xj ) has the simple interpretatio
as the conditional probability of finding speciesk given that
the site to the left is occupied by speciesj . We again find
the phase boundaries by determining where the p



he
in
,
-

re
n
a

c
.
in

ir
m

ttl
t

to

ry
s

a
d
h
th
f

es
le
he
th

t
le

t
t

-
s
l c
h
th

on
u
o
o

e

t t
-
al

ch

The

ses

re
in-

the

su-
ve
es
ked

To
so

ure
tu-
e
of

e

ut
for
ing

of

e
t

e in

ck
d
he
in

tion
cur-
the
o-
the
ent

3956 56K. S. BROWN, K. E. BASSLER, AND D. A. BROWNE
soned phase fixed point of the system of Eqs.~4! and ~5!
loses stability. Unlike the site approximation, solving t
equations to determine the phase boundary was determ
numerically. This procedure required some care because
though terms such asxVA andxV vanish on the phase bound
ary, their ratio, which appears in Eqs.~4! and ~5! in our
approximation, is nonzero. We note that, just as for the th
species model@13#, Fig. 2 shows that this approximatio
fails to produce the coexistence curve between the satur
phases. This indicates that the large domains ofA andB that
appear close to the absorbing phase transitions are not a
rately represented in the site and pair approximations
both of these approximations, the width of the reactive w
dow is proportional to 12r as r approaches one.

The triple approximation is similar in spirit to the pa
approximation with higher-order correlations being deco
posed as conditional probabilities viaxi jkl 'xi jk(xjkl /xjk)
and xi jklm'xi jk(xjkl /xjk)(xklm /xkl). The numerically deter-
mined phase diagram is shown in Fig. 2 and shows li
difference from the pair approximation except very close
r 51. Surprisingly, the triple approximation fails here
move the bicritical point away fromr 51, which did happen
in our earlier work@13# on the three-species model. Ve
close to r 51, the width of the reactive region varies a
(12r )3/2 in this approximation.

We stop the mean-field approach at the triple approxim
tion because the increase in algebra is not compensate
by an improvement of the phase diagram. The failure of t
mean-field approach to produce a realistic position for
bicritical point is linked to the fact that the probability o
observing a long cluster of sites all filled with one speci
which is approximated here by the probability of a smal
cluster raised to a power, will decay exponentially with t
size of the cluster. However, the simulations presented in
paper and previous work@12,13# clearly show that at the
bicritical point large domains of each species are presen
the steady state, with the fundamental dynamical variab
being the domain walls.

Large domains by themselves do not necessarily cause
mean-field theory to fail since a similar procedure applied
some monomer annihilation models@19# and cooperative se
quential adsorption models@21# models yields exact result
because the cluster equations close. However, the spatia
relations in those models are very different from ours. T
adsorption models have short-ranged correlations, while
monomer annihilation models have long-range correlati
that result from a simple linear diffusion process. In o
model, the long-range correlations are stronger than th
produced by simple diffusion, so mean-field theory based
small clusters fails here.

IV. SIMULATIONS

The behavior of this model at the critical lines has be
studied and found to be in the DP universality class@17#,
which we verified using 105 independent runs of up to 104

time steps. What has not been studied is the behavior a
bicritical point. We use two types of ‘‘epidemic’’ simula
tions@6,14,22# to study the system’s behavior at the bicritic
point. The first~defect dynamics! starts with the lattice in a
configuration close to one of the saturated phases, in whi
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lone vacancy is surrounded by members of one species.
second~interface dynamics! studies the time evolution of a
minimum-width interface between the two saturated pha
~a lone vacancy is bordered on one side byA’s and byB’s on
the other side!. In the defect dynamics, the simulations a
over when the lattice becomes totally saturated. For the
terface dynamics the end of the simulation is marked by
‘‘collapse’’ of the interface back to its minimum width@12#.

Since the total number of possible adsorption sites is u
ally very small, we use a variable time algorithm to impro
computational efficiency. A list of possible adsorption sit
is kept during the simulation, and one of these sites is pic
at random for adsorption according to$pa% and, if appli-
cable,r . Time is then incremented by 1/nV(t), wherenV(t)
is the number of vacancies in the lattice at that time.
avoid end effects, we always start with a lattice that is
large as to be considered of infinite extent.

During the defect dynamics simulations, we meas
P(t), the probability that the system will not become sa
rated at timet; nV(t), the number of vacancies in the lattic
at time t; no(t), the number of species opposite to those
the initial saturated configuration at timet; and R2(t), the
square size of the reactive region in a surviving run at timt.
At a continuous phase transition ast→` these quantities
obey power laws

P~ t !}t2d, ^R2~ t !&}tz, ^nV~ t !&}th, ^no~ t !&}tho. ~7!

The exponentho is not independent of the others, b
gives a useful check on the calculation. The scaling law
ho can be understood by considering the set of all surviv
runs. The width of the defect region grows astz/2. This re-
gion is filled with vacancies and sites occupied by either
the species, so@R2(t)#1/25c(nV1nA1nB)P(t), with c some
constant. The factorP(t) accounts for the fact that only th
surviving runs contribute toR2(t). If we further assume tha
in this defect~which is very large for long times sincez.0)
we have the same kind of configurations as we would se
a static simulation, we should haveno5NA(t)5NB(t). Thus
we should see

2no~ t !5
@R2~ t !#1/2

cP~ t !
2nV~ t !;c1tz/22d2c2th, ~8!

so we see thatho5z/22d.
For the interface dynamics simulations, we defineP(t) to

be the probability of the interface of avoiding collapse ba
to minimum width, withn(t) the vacancy concentration an
R2(t) the square size of the interface, both similar to t
above.no(t) has no meaning or corresponding equivalent
this type of simulation, so it is not measured. Ast→` these
quantities obey power laws

P~ t !}t2d8, ^n~ t !&}th8, ^R2~ t !&}tz8. ~9!

Log-log plots of these measured quantities as a func
of time are straight lines at a phase transition and show
vature away from transitions. A precise estimate for both
location of the bicritical point and the values of the exp
nents can be obtained by examining the local slopes of
curves on a log-log plot. For example, the effective expon
2d(t) is defined as
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2d~ t !5$ ln@P~ t !/P~ t/b!#/ lnb%, ~10!

with similar definitions forh(t), ho(t), and z(t). We usu-
ally chooseb55 for our numerical work, with other value
such asb52 andb53 being used to check the results. A
the bicritical point, the value of the effective expone
should extrapolate to the bicritical value in the long tim
limit ( t21→0). Away from the bicritical point, the loca
slope will show strong upward or downward curvature
t21→0.

To determine the value of both the critical exponents a
their uncertainties, we use a technique different from t
typically employed@6,22#. The data collected at the bicritica
point are divided into ten data sets that are statistically in
pendent. A linear regression is then performed on each
with the intercept the only pertinent quantity. The value
the exponent is then calculated as the simple mean of the
intercepts and the uncertainty is the standard error of
mean. All of the results quoted in this paper were obtain
using this technique, which gives a more unbiased estim
of the uncertainty than previous methods that used the q
ity of the linear fit to the entire data set.

Figure 3 shows the local slopes of the data for the de
dynamics simulations forp50.5 and r near the bicritical
value. The system started near anA-saturated phase, but th
symmetry of the model dictates that we could equally as w
have started near aB-saturated phase. These data were c
culated from 106 independent runs of up to 105 time steps at
eachr value.

The analysis presented in Fig. 3 gives a critical repuls
value of r c50.7435(15). We find values of d
50.287(4), h50.003(4), ho50.306(5), and z51.146(8)
for the critical exponents. From these values we determ
the bicritical behavior falls in the BAWE universality clas
for which @14# the exponents ared50.285(2),h50.000(1),
andz51.141(2). Thevalue ofho does not agree very we
with the scaling lawho5z/22d derived above, but that is
the result of the effect of the second term in Eq.~8!, which

FIG. 3. Effective exponents for the bicritical defect dynamic
The three curves correspond to three values ofr near the bicritical
point. From top to bottom they arer 50.7420,0.7435,0.7450, with
the middle curves corresponding to the bicritical values. The timt
is measured in Monte Carlo updates per site.
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acts as a large correction to the asymptotic time behav
The agreement with the scaling law improves when the d
for no is fit using the form~8! with the exponentsz, d, and
h fixed and the coefficientsc1 andc2 are fitted.

Figure 4 shows the results from the interface dynam
simulations for three values ofr nearr c50.7435(15). From
107 independent runs of up to 105 time steps we find values
of d850.700(10),h8520.404(9), andz851.153(6). This
type of simulation gives us information about the compe
tion between the growth of the two saturated phases tha
not gained in the defect dynamics type of simulations. Fi
notice thatz8, the exponent governing the size of the inte
face, equalsz. Also, althoughd8 andh8 have different val-
ues from their defect dynamics cousins, the sumd81h8,
which controls the time evolution of the number of vacanc
in just the surviving runs, is the same asd1h within statis-
tical error. This indicates that the critical spreading of t
defect is insensitive as to whether it is bordered on each
by the same saturated phase or by two different, tho
equivalent, saturated phases. The independent dynamica
ponentd8 measured here agrees with the value found in
three-species model@12,13#, suggesting that its value is un
versal.

V. SUMMARY

We have investigated the behavior of an interacting o
dimensional adsorption-limited monomer-monomer mod
The like-neighbor repulsion in the model leads to the pr
ence of a large reactive region and a bicritical point, inac
rately termed a tricritical point in Ref.@17#, where the first-
order discontinuous transition between the two symme
saturated phases meets the two continuous transitions
either saturated phase to the reactive phase. We have

.

FIG. 4. Effective exponents for the bicritical interface dynamic
The three curves correspond to three values ofr near the bicritical
point. From top to bottom they arer 50.7420,0.7435,0.7450, with
the middle curve corresponding to the bicritical value. The timet is
measured in Monte Carlo updates per site.
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3958 56K. S. BROWN, K. E. BASSLER, AND D. A. BROWNE
two types of epidemic simulations to study the behavior
the system at the bicritical point. Using the defect dynam
simulations, we determine the bicritical behavior falls in t
BAWE universality class. With the interface dynamics w
measure a universal numberd8, related to the probability tha
a minimum-width interface between the two saturated pha
will avoid collapse back to its minimum size. It would b
interesting to measure the exponentd8 for other models in
which two symmetric adsorbing phases meet a reac
phase. In addition, by comparing the results from the t
types of simulations we find that the time evolution of t
number of vacancies in the lattice in the surviving runs is
same in both cases. This suggests that the critical sprea
of a localized defect is insensitive to initial conditions a
the characteristic fluctuations in the domain walls beh
differently from a defect in a homogeneous phase.
f
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e

The failure of mean-field theory to describe the qualitat
features of the phase diagram, even when clusters of tri
of sites were included, points to the importance of large
mains of each species in the vicinity of the bicritical poin
The large domains, which are clearly apparent in sta
Monte Carlo simulations, are the necessary background
the simplest dynamical variables needed to describe the
critical point, namely, the domain walls. The random wal
of these walls, coupled with the fact that their number
conserved modulo 2, are the crucial ingredients in the crit
behavior at the bicritical point.
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