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Mean-field analysis and Monte Carlo study of an interacting two-species reaction model
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We study the phase diagram and critical behavior of an interacting one-dimensional two-species monomer-
monomer catalytic surface reaction model with a reactive phase as well as two equivalent adsorbing phases
where one of the species saturates the system. The model depends on two parameters: the relative adsorption
rates of the two species and a repulsive interaction between like neighbors. A mean-field analysis including
correlations up to triplets of sites fails to reproduce the phase diagram found by Monte Carlo simulations. The
three phases coexist at a bicritical point whose critical behavior is described by the even branching annihilating
random-walk universality class. This work confirms the hypothesis that the conservation modulo 2 of the
domain walls under the dynamics at the bicritical point is the essential feature in producing critical behavior
different from directed percolation. The interfacial fluctuations show the same universal behavior seen at the
bicritical point in a three-species model, supporting the conjecture that these fluctuations are an additional
universal characteristic of the modg51063-651X97)04610-2

PACS numbegs): 05.70.Ln, 64.60.Kw, 82.20.Mj

I. INTRODUCTION random walks with an even number of offsprilBAWE)
[5,14]. All of these models except for the BAWE have two

Nonequilibrium statistical models with many degrees ofequivalent absorbing states, indicating the importance of
freedom whose dynamics violate detailed balance arise isymmetry of the adsorbing state to the universality class.
many areas such as biological populations, chemical readdowever, the universal behavior of this class is apparently
tions, fluid turbulence, traffic flow, and growth-deposition controlled by a dynamical conservation law. If the important
processes. The macroscopic behavior of these models can dgnamical variables in this class are defects represented by
much richer than that of systems in thermal equilibrium,the walkers in the BAWE model and the walls between dif-
showing organized macroscopic spatial and temporal struderent saturated domains in the other models, the models
tures such as pulses or waves and even spatiotemporal chabave a “defect parity” conservation laj®] where the num-
Even the steady-state behavior of a homogeneous systebber of defects is conserved modulo 2. Recent field-theoretic
without these structures can be far more complicated, involvwork confirms this viewpoinf15].
ing, for example, a scale-invariant steady state without tun- Recently, two of u§12,13 investigated a three-species
ing the system to a specific point. However, like their equi-monomer model with annihilation reactions between dissimi-
librium cousins, systems at continuous transitions betweeflar species. The transitions from the reactive state to a single
nonequilibrium steady states show universal behavior that iabsorbing state where one species saturates the system fell in
insensitive to microscopic details and depends only on propthe DP universality class. These phase boundaries meet at
erties such as symmetries and conservation laws. bicritical points[16] where two different absorbing states

One class of models that has received extensive study soexist. Because the domain walls between different do-
that with absorbing phase transitions where the systermains of the two phases spawn and annihilate in pairs, the
changes from an active state with statistical fluctuationgritical behavior fell into the BAWE universality class. We
about the mean behavior to a noiseless inert state consistiragso showed that at the bicritical point the characteristic fluc-
of a single microscopic configuration. The term “absorbing” tuations of the domain walls between the equivalent absorb-
refers to the fact that the system cannot leave this state ondeg phases was given by an independent exponent.
it reaches it. Examples include directed percolati@P) The present paper studies the connection between the be-
[1,2], the contact proceds], autocatalytic reaction models havior at a bicritical point and the presence of the BAWE
[4], and branching annihilating random walks with odd num-critical behavior and tests the universality of the interfacial
bers of offspring[5,6]. Both renormalization-group calcula- fluctuations. We investigate a model introduced by Zhuo,
tions[1,7] and Monte Carlo simulationg2—6,8 show that Redner, and Parkl7] that also has a bicritical point at the
these models form a single universality class for a purehjunction of two absorbing phase transitions. Unlike our pre-
nonequilibrium model with no internal symmetry in the or- vious work, this model has only two species that compete for
der parameter. adsorption sites and annihilate each other if they occupy ad-

Recently, a number of models with continuous adsorbingacent sites. The bicritical point arises by adding a repulsion
transitions in a universality class distinct from directed per-among like neighbors that affects the adsorption rate. Despite
colation have been studied. These models include probabilithese differences, we find that the bicritical exponents in this
tic cellular automata models studied by Grassberger and conodel also fall into the BAWE class and the interfacial ex-
workers[ 9], certain kinetic Ising modelgl0], the interacting ponents are the same as in the three species model, lending
monomer-dimer modéll1], a three species monomer model credence to the universal nature of the interfacial fluctua-
with Potts-like symmetry12,13, and branching annihilating tions.
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10 . . . . Ill. MEAN-FIELD THEORY
08 | | To analyze the kinetics of this model, it is useful to per-
’ A-saturated form a mean-field analysis. While such an analysis neglects
06 | | long-range correlations and thus cannot be expected to prop-
p Reactive = T @-——n- i erly predict critical properties, it should properly predict the
04t i qualitative structure of the phase diagram, including the ex-
istence of continuous transitions and multicritical points. The
02 | B-saturated . mean-field analysis also provides a starting point for study-
ing the importance of such fluctuations, which become par-

0.0 : . . : ticularly important near continuous phase transitions. The
00 02 04 06 08 10 . . : :
r mean-field approach we u$20] studies the time evolution
of clusters of sites, the approximation coming in truncating
FIG. 1. Phase diagram determined by Monte Carlo simulatiorfh® probabilities of observing clusters of larger size into
for the interacting monomer-monomer model. The continuous tranProbabilities for smaller size clusters. The analysis presented
sitions from either of the saturated phasasandB) to the reactive ~ below of this one-dimensional model includes clusters con-
phase are shown as solid lines, while the transition between the twaisting of up to triplets of adjacent sites.
saturated phasdsot-dash lingis first order. The three phases co- At a particular time, a lattice wittN sites will haveNy
exist at a bicritical point atr(;,p.) = (0.7435,0.5), which is shown vacancies, the remaining sites being filled with A mono-
as a heavy dot. mers and\Ng B monomers. The density of speciesA,B,V

is x;=N;/N. We have the obvious constraint
In Sec. Il we introduce the model and in Sec. Il present

results for the mean-field theory in two levels of approxima- Xy+Xp+Xg=1, (1)
tion. Section IV discusses our static and dynamic Monte

Carlo simulations that yield a different phase diagram fromso we can take, andxg as independent.

the mean-field results and produce critical exponents for the We next consider clusters of pairs of sites, where we de-
dynamic behavior that fall into the BAWE class. Section V fine N;; as the number of pairs with specieen one site and

contains our conclusions. j on the site to its right, and the pair densiy=(N;; /N).

Because of the immediate reaction AB pairs we have
Il. MODEL Nag=Nga=0. Using relations between the pair and site oc-
cupancies
The model we study was introduced by Zhuo, Park, and

Redner[17]. Two monomers, called andB, adsorb at the Xa=XaaT Xay=XyaT Xaa,

vacant sites of a one-dimensional lattice with probabilipes

and q, respectively, wher@+q=1. Unlike monomers on Xg=XggT Xgy=XysT XgB,

adjacent sites react immediately and leave the lattice, leading

to a process limited only by adsorption. Without further Xy=Xay+ Xgy+ Xyv, 2

rules, this model has no reactive steady state except at

p=q=1/2. To expand this reactive “point” into a reactive only two of the pair densities are independent of the

region, Zhuoet al. introduced a repulsive interaction among which we choose to be,, andxgg.

like monomers that affected the adsorption step. If either For the clusters of triples we defid;, as the number of

neighboring site is occupied by the same species as that tryriples with specieg in the central site, speciego the left,

ing to adsorb, the adsorption probability is reduced by a facand speciek to the right, with the corresponding densities

tor r<1, mimicking the effect of a nearest-neighbor repul-x;;, = N;;/N. The prohibition of adjacenAB pairs and the

sive interaction. relations between the numbers of clusters of triples and pairs
We have performed static Monte Carlo simulations thatof sites,

produce a phase diagram similar to the one found by &iuo

al. [17]. The diagram, displayed in Fig. 1 wihplotted vsr, Xaa= XyaaT Xyyy=XaavT XaAAs
shows a reactive steady state bordered by two equivalent

saturated phasdibeledA andB). The transitions from the Xav=XyavT Xaav=XavvT XavaT Xave,
reactive phase to either of the saturated phases are continu-

ous, while the transition between the saturated phases is first- Xya= XyavT Xyvaa=Xyvat XavaT Xgva,
order discontinuous. The two saturated phases meet the re-

active phase at hicritical point [16] at a critical value of Xge=XveeT XeeB= XgBVT XBBE:

r=r.. In the case ofr =1, the reactive region no longer
exists[18,19 and the only transition line is the first-order
discontinuous line between the saturated phases. Another
model in which the adsorption repulsion is not symmetric
(only A’s “feel” the repulsion has been studigd 7] and its
critical behavior was found to be in the DP universality class.
However, no effort was made to determine either the location
of the bicritical point or the bicritical behavior of the model. =XyyvT XavvT Xgvv, (©)]

Xgv=XvevT Xgev=XBVvvT XBVvAT XBVB:
Xye=XvevT Xyep=XvveT XavBT XBVB:

Xyv=XyvvT Xyvat Xyve
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TABLE I. Rates for all allowed kinetic processes. The adsorp-

1.0 \ ' ' ' ' tion is attempted on the middle site in each case.
0.9 |\ 1 . .
A adsorption Rate B adsorption Rate
08| A-saturated Phase ] VVVo VAV D VV\LVBY q
P orl VVA—VAA pr VVASVVV qr
) . AVV—AAV pr AVV=VVV qr
06 | 1 AVA—AAA pr AVA-AVV iqr
Reactive Phase "\\\\\ AVA—VVA %qr
0.5O 0 0'2 0'4 0I6 0';“‘ ‘1 0 VVB—VVV p VVB-VBB qr
) ’ ) ¢ ) ’ ’ BVV—VVV p BVV-BBV qr
BVB—BVV spr BVB—BBB ar
FIG. 2. Phase boundary between thesaturated and reactive BVB—VVB spr
phases in the site approximati¢olid line) and pair approximation AVB—AVV pr AVB-VVB qr
(dashed ling The triple approximation is indistinguishable from ByvA—VVA pr BVA-BVV qr
the pair approximation in this figure.
gives a total of six independent triple densities: dxg
Xaans Xavas XsBa: Xeve, Xavs, and Xgya. The last two ot = Pt ar(xvvet XevwtXvey)
are equal in a homogeneous steady state.
We must calculate the rate that each of these densities —Pp(XyvetXgvvt Xvey) — Pr(Xgvat Xave), (4)

change due to four allowed kinetic processes: deposition of

anA without reaction, removal of aA by reaction with @8 which clearly show theA—B symmetry noted above. By

adsorbing next to it, deposition offa without reaction, and  considering each of the possible reactions in Table I, the
removal of aB by reaction by an adsorbing. These four  equation for theAA pairs is

processes are detailed in Table I. Because of the symmetry of
the reaction rules, we will usually only present explicit for- X
mulas for half of the equations; the remainder can be found AR pPr(Xyyvat Xavvt 2Xava) — q(Xyvaat Xaavy
by interchangingd andB everywhere in the equations. dt

The exact equations for the single-site densities are

1 1
+ 2Xaavat 2Xavan) —Ar(Xaavet Xsvaa), (5

dXp
dat - PXvwwt Pr(Xyva® XavytXvav) where we have denoted densities of quartets of sites in an
obvious extension of our notation. Finally, the triples obey
—q(XyvatXayvtXvay) —Ar(Xavst Xsva), the equations
dXaaa

— 1 1
gt P r(XyvaatXaavvt Xavat Xavaat Xaava) — d(Xyvaaat Xaaavvt 2Xaaavat zXavaans) —dr(Xaaavet Xsvaaa),

dXava
at P(Xyvvat Xavvyv) = PrXava— d(Xyvavat Xavavvt Xavavat Xava) —Ar(Xavavet Xgvava),

dXave
_ 1 1
B THE PXyvvet AXavvyv— d(Xyvavet 2Xavave) — P(Xavevvt 2Xaveve) —Ar(Xavet Xgvave) — Pr(Xavet Xaveva). (6)

In general, for a cluster dfl sites, the adsorption processes =1/(1+r). These are shown as dashed lines in Fig. 2. The
link clusters of M sites to clusters oM+ 1 sites and the absorbing state transitions are continuous, but there is no
reaction processes link to clustersMf+ 2 sites. coexistence line between the saturated phases, just as we
To close the equations we perform a truncation. In the sitédound in Ref.[13].
approximation, we ignore any spatial correlations and solve In the pair approximation, we replace correlations of
just Egs. (4) using Eqg. (1) and the approximation triples and larger clusters of sites by approximating them as
Xij=XiX;X;. We find the boundary between the saturated X =X;; (X /%;) and Xjji; = X;j (Xji /X;) (X1 /%) . Each term
phase and the reactive phase by finding the combination doh parentheses such ag(/x;) has the simple interpretation
parameterg and r where the saturated phase fixed pointas the conditional probability of finding speciegjiven that
loses its stability. This occurs whep=1/(1+r). The the site to the left is occupied by speciesWe again find
B-saturated phase boundary is given bg=1—-p the phase boundaries by determining where the poi-
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soned phase fixed point of the system of E@s.and (5) lone vacancy is surrounded by members of one species. The
loses stability. Unlike the site approximation, solving the second(interface dynamigsstudies the time evolution of a
equations to determine the phase boundary was determineinimum-width interface between the two saturated phases
numerically. This procedure required some care because, dla lone vacancy is bordered on one sidefdy and byB’s on
though terms such as,» andxy vanish on the phase bound- the other sidg In the defect dynamics, the simulations are
ary, their ratio, which appears in Eg&t) and (5) in our  over when the lattice becomes totally saturated. For the in-
approximation, is nonzero. We note that, just as for the threéerface dynamics the end of the simulation is marked by the
species mode[13], Fig. 2 shows that this approximation ‘“collapse” of the interface back to its minimum wid{i2].

fails to produce the coexistence curve between the saturated Since the total number of possible adsorption sites is usu-
phases. This indicates that the large domaina ahdB that  ally very small, we use a variable time algorithm to improve
appear close to the absorbing phase transitions are not acatemputational efficiency. A list of possible adsorption sites
rately represented in the site and pair approximations. lis kept during the simulation, and one of these sites is picked
both of these approximations, the width of the reactive win-at random for adsorption according {p,} and, if appli-
dow is proportional to +r asr approaches one. cable,r. Time is then incremented byri/(t), wheren,,(t)

The triple approximation is similar in spirit to the pair is the number of vacancies in the lattice at that time. To
approximation with higher-order correlations being decom-avoid end effects, we always start with a lattice that is so
posed as conditional probabilities viaj =~ Xiji (Xjki /Xjk) large as to be considered of infinite extent.
and Xijiim = Xijk (Xjk /Xji) (Xcim/Xi1) - The numerically deter- During the defect dynamics simulations, we measure
mined phase diagram is shown in Fig. 2 and shows littleP(t), the probability that the system will not become satu-
difference from the pair approximation except very close torated at time; ny(t), the number of vacancies in the lattice
r=1. Surprisingly, the triple approximation fails here to at timet; ny(t), the number of species opposite to those of
move the bicritical point away from=1, which did happen the initial saturated configuration at time and R%(t), the
in our earlier work[13] on the three-species model. Very square size of the reactive region in a surviving run at time
close tor=1, the width of the reactive region varies as At a continuous phase transition &s»o these quantities
(1—r)%2in this approximation. obey power laws

We stop the mean-field approach at the triple approxima-
tion because the increase in algebra is not compensated for P(D)*t™% (R¥(D)=t% (ny(t))t”, (no(t))ect”. (7)
by an improvement of the phase diagram. The failure of this

mean-field approach to produce a realistic position for the . -Ie:zeaexspe?nlegézoc Ilsoﬂotthclangzlpc):e?adt%nrf (?I_fhghgcgnerslé bl;(t)r
bicritical point is linked to the fact that the probability of g usetu iation. Ing law

observing a long cluster of sites all filled with one species,”° can be understood by considering the set of all surviving

which is approximated here by the probability of a smaller’ns: The width of the defect region grows S, This re-

cluster raised to a power, will decay exponentially with thedion is filled with vacancies and sites occupied by either of

H 2 1/2__ H
size of the cluster. However, the simulations presented in thiE,he species, SER*(1) ]**=c(ny+na+ng) P(1), with c some
paper and previous workl2,13 clearly show that at the consta_mt. The factoE(t) accgunts for the fact that only the
bicritical point large domains of each species are present igUrviving runs contribute t&*(t). If we further assume that
the steady state, with the fundamental dynamical variable this defectwhich is very large for long times sin@-0)
being the domain walls. we have the same kind of configurations as we would see in

Large domains by themselves do not necessarily cause t/feStatic simulation, we should hang=Na(t) =Ng(t). Thus
mean-field theory to fail since a similar procedure applied toV€ Should see
some monomer annihilation mod¢k9] and cooperative se- [R2(t)]Y2
quential adsorption mode[21] models yields exact results 2n,(t) = ——="——ny(t)~c t?? I—c,t7, (8)
because the cluster equations close. However, the spatial cor- cP(t)

relations in those models are very different from ours. Theso we see thay,=2/2— 6.

adsorption models have short-ranged correlations, while the For the interface dynamics simulations, we deft(e) to

monomer annihilation models have long-range correlatlon%e the probability of the interface of avoiding collapse back

tmhgtdélestﬂ(ta flr::q_f‘a:"rgp(l;rr'g}g?gni'fgjrselogtrg;oc;sfhalr? tﬁgrto minimum width, withn(t) the vacancy concentration and
' 9 9 9 2(t) the square size of the interface, both similar to the

produced by simple diffusion, so mean-field theory based on . . . :
small clusters fails here. above.n,(t) has no meaning or corresponding equivalent in

this type of simulation, so it is not measured. tAs « these
guantities obey power laws
IV. SIMULATIONS , , ,
P()=t™%, (n(t))=t”, (R3(t))oct”. 9
The behavior of this model at the critical lines has been

studied and found to be in the DP universality clag], Log-log plots of these measured quantities as a function
which we verified using 10independent runs of up to 40 of time are straight lines at a phase transition and show cur-
time steps. What has not been studied is the behavior at theature away from transitions. A precise estimate for both the
bicritical point. We use two types of “epidemic” simula- location of the bicritical point and the values of the expo-
tions[6,14,23 to study the system’s behavior at the bicritical nents can be obtained by examining the local slopes of the
point. The first(defect dynamidsstarts with the lattice in a curves on a log-log plot. For example, the effective exponent
configuration close to one of the saturated phases, in which a §(t) is defined as
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FIG. 3. Effective exponents for the bicritical defect dynamics. 1.10 10
The three curves correspond to three values péar the bicritical 0.0 0.5 :
point. From top to bottom they ame=0.7420,0.7435,0.7450, with 1000/t
the middle curves corresponding to the bicritical values. The time ) o .
is measured in Monte Carlo updates per site. FIG. 4. Effective exponents for the bicritical interface dynamics.
The three curves correspond to three values péar the bicritical
— 8(t)={In[P(t)/P(t/b)]/Inb} (10) point. From top to bottom they ame=0.7420,0.7435,0.7450, with

the middle curve corresponding to the bicritical value. The tirnse

with similar definitions forz(t), 7(t), andz(t). We usu- Measured in Monte Carlo updates per site.

ally chooseb=5 for our numerical work, with other values o ]
such asb=2 andb=3 being used to check the results. At acts as a large correction to the asymptotic time behavior.
the bicritical point, the value of the effective exponent The agreement with the scaling law improves when the data
should extrapolate to the bicritical value in the long timefor N is fit using the form(8) with the exponentg, 4, and
limit (t~*—0). Away from the bicritical point, the local 7 fixed and the coefficients, andc, are fitted. _
slope will show strong upward or downward curvature as Figure 4 shows the results from the interface dynamics
t~1.0. simulations for three values ofnearr.=0.7435(15). From

To determine the value of both the critical exponents and.0’ independent runs of up to 1@me steps we find values
their uncertainties, we use a technique different from thaff 6’ =0.700(10), 7" = —0.4049), andz’ =1.1536). This
typically employed6,22]. The data collected at the bicritical type of simulation gives us information about the competi-
point are divided into ten data sets that are statistically indetion between the growth of the two saturated phases that is
pendent. A linear regression is then performed on each setot gained in the defect dynamics type of simulations. First,
with the intercept the only pertinent quantity. The value fornotice thatz’, the exponent governing the size of the inter-
the exponent is then calculated as the simple mean of the tdace, equalz. Also, althoughs” and »" have different val-
intercepts and the uncertainty is the standard error of the€s from their defect dynamics cousins, the sdm- 7',
mean. All of the results quoted in this paper were obtainedvhich controls the time evolution of the number of vacancies
using this technique, which gives a more unbiased estimati# just the surviving runs, is the same &s » within statis-
of the uncertainty than previous methods that used the quatical error. This indicates that the critical spreading of the
ity of the linear fit to the entire data set. defect is insensitive as to whether it is bordered on each side

Figure 3 shows the local slopes of the data for the defeddy the same saturated phase or by two different, though
dynamics simulations fop=0.5 andr near the bicritical ~€quivalent, saturated phases. The independent dynamical ex-
value. The system started near Arsaturated phase, but the ponents’ measured here agrees with the value found in the
symmetry of the model dictates that we could equally as welthree-species modg12,13, suggesting that its value is uni-
have started near B-saturated phase. These data were calversal.
culated from 16 independent runs of up to 1@ime steps at

eachr value.
The analysis presented in Fig. 3 gives a critical repulsion V. SUMMARY
value of r.=0.7435(15). We find values ofé We have investigated the behavior of an interacting one-

=0.2814), »=0.0034), »,=0.30§5), andz=1.146(8) dimensional adsorption-limited monomer-monomer model.
for the critical exponents. From these values we determin&he like-neighbor repulsion in the model leads to the pres-
the bicritical behavior falls in the BAWE universality class, ence of a large reactive region and a bicritical point, inaccu-
for which[14] the exponents aré=0.2852),7=0.00q1), rately termed a tricritical point in Refl17], where the first-
andz=1.1412). Thevalue of 5, does not agree very well order discontinuous transition between the two symmetric
with the scaling lawzn,=2z/2— § derived above, but that is saturated phases meets the two continuous transitions from
the result of the effect of the second term in E8), which  either saturated phase to the reactive phase. We have used
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two types of epidemic simulations to study the behavior of The failure of mean-field theory to describe the qualitative
the system at the bicritical point. Using the defect dynamicdeatures of the phase diagram, even when clusters of triples
simulations, we determine the bicritical behavior falls in theof sites were included, points to the importance of large do-
BAWE universality class. With the interface dynamics we mains of each species in the vicinity of the bicritical point.
measure a universal numbér, related to the probability that The large domains, which are clearly apparent in static
a minimum-width interface between the two saturated phaseglonte Carlo simulations, are the necessary background for
will avoid collapse back to its minimum size. It would be the simplest dynamical variables needed to describe the bi-
interesting to measure the exponeiitfor other models in  critical point, namely, the domain walls. The random walks
which two symmetric adsorbing phases meet a reactivef these walls, coupled with the fact that their number is
phase. In addition, by comparing the results from the twaconserved modulo 2, are the crucial ingredients in the critical
types of simulations we find that the time evolution of the behavior at the bicritical point.

number of vacancies in the lattice in the surviving runs is the
same in both cases. This suggests that the critical spreading
of a localized defect is insensitive to initial conditions and
the characteristic fluctuations in the domain walls behave This work was supported by the National Science Foun-
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